RECOVERY: LOOKING FORWARD TO THE NEXT MATCH

Jay H. Williams, Ph.D.
Department of Human Nutrition, Foods and Exercise
Virginia Tech
Blacksburg, VA 24061
The Congested Calendar...

USA vs Portugal
Sunday, June 22

USA vs Germany
Thursday, June 26

Virginia Tech at Miami
Thursday, Oct 9

Virginia Tech at FSU
Sunday, Oct 12

NR United vs Richmond Strikers
Saturday, May 24 (9:00)

NR United vs Virginia United
Saturday, May 24 (2:00)
Training and Match Load

- Fatigue
- Recovery
- Injury Prevention
- Rehabilitation

Virginia Tech vs Notre Dame
Match Performance and Recovery

Session = Warm Up + 90 min Match + 20 min Overtime

<table>
<thead>
<tr>
<th></th>
<th>College Male</th>
<th></th>
<th>College Female</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Heart Rate</td>
<td>162 bpm</td>
<td></td>
<td>164 bpm</td>
<td></td>
</tr>
<tr>
<td>Total Distance</td>
<td>19,391 m (~12 mi)</td>
<td>15,996 m (~10 mi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Intensity Dist</td>
<td>4,7058 m</td>
<td></td>
<td>3,282 m</td>
<td></td>
</tr>
<tr>
<td>Sprints</td>
<td>93</td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Collisions</td>
<td>12</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Energy Expended</td>
<td>1,905 kcal</td>
<td></td>
<td>1,220 kcal</td>
<td></td>
</tr>
</tbody>
</table>
Long-Term Recovery and Adaptation
Goals for Recovery

1. Recover for the next session *(day - short term)*

1. Recover for the next match *(week - intermediate term)*

1. Adapt to training *(months - long term)*
What Happens Post-Match?

Energy and Fluid Stores
Glycogen Depletion and Dehydration

Rest – Sleep

Muscle Recovery
- Performance
- Soreness
- Adaptation

![Graph showing percent change in strength and speed over 5 days after a match.](graph.png)
Where Can We Intervene?

<table>
<thead>
<tr>
<th>Term</th>
<th>Timeframe After Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate – Term</td>
<td>0-30 min Post-Match</td>
</tr>
<tr>
<td>Short - Term</td>
<td>0-45 min Post-Match</td>
</tr>
<tr>
<td>Intermediate – Term</td>
<td>Several Hours Post-Match</td>
</tr>
<tr>
<td>Long - Term</td>
<td>Several Days Post-Match</td>
</tr>
</tbody>
</table>
Diet and Hydration

Recovery Diet and Hydration
• Carbohydrates and fluids
• Within first 45-60 min post-exercise

Follow with a high carbohydrate meal

Solid, high carbohydrate, low fat diet

This week:
“Fueling Up for Match Day/Tournament“
Angel Planells, Nutrition Consultant, ACP Nutrition

"Nutritional Supplements to Enhance Soccer Performance: Debunking the Myths“
Dr. Ajit Korgaokar, Assistant Professor for Health & Human Performance, University of Tennessee-Martin
“Student-athletes say Sleep is the number one thing their athletic time commitments prevent them from doing, ultimately hindering their athletic and academic performance”

PAC 12 Survey, 2015
Sleep - Consequences

Athletes generally do not get enough sleep
• College and high school

Can impact physical and mental performance
• Cognitive, decision making
• Reaction time
• Strength
• Power
• Endurance
Sleep – Injury Risk in Young Athletes

Milewski et al., 2014

- Illness risk also increased
- Concussion diagnosis and recovery impaired
What is “Delayed Onset Muscle Soreness?"

Definition
- Occurs following “novel” exercise
 - Single or repeated contractions
 - Often eccentric exercise
 - Greater force, more novel

Time Course
- Appears within 24 hrs of exercise
- Peaks between 24-72 hrs post-exercise
- Disappears within 72 hrs

Not Due To:
- Strain, tear, cramps or chronic pain
- A pathological / disease condition
What Causes Muscle Soreness?

Muscle Fiber Damage
- Not metabolic (lactic acid)
- Not temperature
Effects of Damage

1. **Physical Damage**
2. **Autogenic Damage** (Oxidative Stress, Calcium)
3. **Pain / Inflammation**
4. **Repair**

Muscle Proteins
- Creatine Kinase

Phagocytes
- Inflammation

Amino Acids
- Protein Synthesis

Autogenic Damage
- Intracellular Proteases
- Oxidative Stress

1. Physical Damage
2. Autogenic Damage (Oxidative Stress, Calcium)
3. Pain / Inflammation
4. Repair
Muscle Damage and Repair

- Physical Damage
- Autogenic Damage
- Muscle Enzymes
- Pain
- Muscle Weakness
- Protein Synthesis

The graph shows the timeline for initial, autogenic, phagocytic, and regenerative stages from 0 to 5 days.
How Best to Deal with Muscle Soreness?

• Physical
 - Cool Down
 - Massage and Compression
 - Ice and Cryotherapy

• Nutrition / Supplements
 - Antioxidants
 - Medications

• Training

Physical Damage
Autogenic Damage
Pain / Inflammation
Repair
Physical Strategies – COOL DOWN

Muscle Strength and Soreness

Confusing effects
- Limited research data
- Small benefit
- No benefit

No adverse effects

Psychological benefits (??)
Physical Strategies – MASSAGE

Theory:
- Passively increase blood flow
- Alleviate pain, aid recovery

Practice:
- Some benefits but are highly variable, often temporary
- Large psychological effect
 - Relaxation
 - Meditation
Physical Strategies – COMPRESSION

Theory:
• Reduces blood pooling
• Limits autogenic damage

Physical Damage
× Autogenic Damage
× Pain / Inflammation
Repair
Physical Strategies – COMPRESSSION

Practice:
• Some benefits, but are highly variable
• Limit pain and damage
• Largest effect with inactive, long-term recovery
 • Bus / car ride home

Jakeman et al., 2010
Physical Strategies - ICE

Ice and Cryotherapy

Theory:
- Reduce inflammation and swelling
- Arrest autogenic damage (protein breakdown)
Physical Strategies - ICE

Practice:

- Perhaps a minor effect
- May be psychological
- Adverse effects ??? (more later)

Bailey et al, 2007
Nutritional and Supplement Strategies

Must consider the cycle of soreness and long-term adaptation

Physical Damage
Autogenic Damage
Pain / Inflammation
Repair
Long-Term Recovery and Adaptation

- Activity
- Fatigue
- DOMS
- Adaptation
- Recovery / Repair

Physical Damage
Autogenic Damage
Pain / Inflammation
Repair
Long-Term Recovery and Adaptation

Exercise → Damage → Repair → Adaptation

Training Effect
Does Muscle Have to Be Torn Down to Be Built Up?

- Muscle Mass
 - Protein Synthesis

- Training

- Aerobic Capacity
 - Energy Production

- Autogenic Damage
 - Oxidative Stress

- Adaptation
 - mTOR Pathway
 - PGC1-a Pathway

- Protein Synthesis
Supplements – ANTIOXIDANTS

Theory
• Reduce oxidative stress during exercise
• Limit autogenic damage
• Alleviate pain

Physical Damage
Autogenic Damage
Pain / Inflammation
Repair
Supplements – ANTIOXIDANTS

Short-Term

Bryer and Goldfarb, 2006
Supplements – ANTIOXIDANTS

Long-Term

Skaug et al., 2014

Physical Damage

Autogenic Damage

Pain / Inflammation

Repair
Does Muscle Have to Be Torn Down to Be Built Up?

- Muscle Mass
 - Protein Synthesis
- Training
 - Aerobic Capacity
 - Energy Production
- Autogenic Damage
 - Oxidative Stress
- Adaptation
 - mTOR Pathway
 - PGC1-a Pathway
 - Antioxidants
 - Ice ??
Supplements – BCAAs / PROTEINS

Theory
- Promote a positive protein balance
- Provide “building blocks” for protein synthesis
- Enhance recovery and repair
- Improves glycogen synthesis – energy replenishment

Amino Acids

Physical Damage

Autogenic Damage

Pain / Inflammation

Repair

USYOUTHSOCCER.ORG
Supplements – BCAAs / PROTEINS

BCAAs supplemented after exercise

Howatson et al., 2012
Supplements – HMB

Practice:
- Blunts protein & membrane breakdown
- Reduces soreness
- Enhances protein synthesis
Does Muscle Have to Be Torn Down to Be Built Up?

Training
- Muscle Mass
 - Protein Synthesis
- Aerobic Capacity
 - Energy Production

Autogenic Damage Oxidative Stress

Adaptation
- mTOR Pathway
- PGC1-a Pathway
- BCAAs
- HMB

Muscle Mass

Protein Synthesis
Training
Making the Activity “Less Novel”

- Physical Damage
- Autogenic Damage
- Pain / Inflammation
- Repair
Does Muscle Have to Be Torn Down to Be Built Up?

Training
- **Muscle Mass**
 - Protein Synthesis
- **Aerobic Capacity**
 - Energy Production

Autogenic Damage
- Oxidative Stress

Soreness
- Soreness
 - Soreness
 - Soreness

Adaptation
- mTOR Pathway
- PGC1-a Pathway
Recovery Strategies – What Works?

Immediate Term (<15 min)
- ✓ Cool Down
- ✓ Stretching

Short Term (15 – 120 min)
- ✓ Nutrition and Hydration
- ✓ Cryotherapy – Cold Water Immersion

Intermediate Term (2-6 hrs)
- ✓ Compression
- ✓ Massage
- ✓ BCAA / HMB

Long Term (4-48 hrs)
- ✓ Training
- ✓ Sleep
- ✓ BCAA / HMB
For More Info...

www.scienceofsocceronline
- FaceBook
- Twitter

Science Behind Soccer Nutrition
- Amazon

US Youth Soccer & NSCAA Websites
- Nutrition articles
- This presentation